Part Number Hot Search : 
D61MCF SMB39 FSA2501M LC89512W 4728A Z1200 LE40CD XL2011
Product Description
Full Text Search
 

To Download MGA-23003 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  description avago technologies MGA-23003 linear power amplifi er is designed for mobile and fi xed wireless data applications in the 3.3 to 3.8 ghz frequency ranges. the pa is optimized for ieee 802.16 wimax modulation but can be used for any high linearity applications. the pa exhibits fl at gain and good match while providing linear power effi ciency to meet stringent mask conditions. it utilizes avago tech- nologies proprietary gaas enhancement-mode phemt technology for superior performance across voltage and temperature levels. the MGA-23003 is packaged in a 3x3x1 mm size for space- constrained applications. applications ? portable wimax applications ? wimax access points functional block diagram features ? advanced gaas e-phemt ? 50 ? all rf ports ? full performance across entire 3.3-3.8ghz ? 13db gain attenuation in low power mode with idsq reduction ? integrated cmos compatible pins for shutdown and low power mode ? 3 to 5v supply ? esd protection all ports above 1000v hbm ? small size: 3 x 3 x 1 mm ? stable under all loads or conditions ? -40 ? c to +85 ? c operation ? integrated dc blocking capacitors for input and output pins. at 3.5ghz (bctrl = 2.8v) ? gain of 35db ? pae of 18% ? meets etsi/802.16 masks at 25 dbm pout, 16qam wimax with 3.3v and 514ma ? 16qam wimax evm < -31db (2.8%) at 25dbm ? low power idd, 94ma, 25db gain, 0dbm pout device marking instruction gnd 16 rfin 1 vcc1 15 bctrl 4 gnd 14 vcc2 13 bsply 5 bsw 6 pmod 7 rfout 11 n/c 9 n/c 8 ismn bias network omn gnd 2 gnd 3 gnd 12 gnd 10 MGA-23003 3.3-3.8 ghz wimax power amplifi er (3x3mm) data sheet 23003 = product code ka = korea ase yy = year code indicates the year of manufacture ww = workweek code indicates the workweek of manufacture xxxxx = last 5 digit of assembly lot number nc bsp ly bs w pamod nc r f ou t gnd gnd 1 6 gnd v cc2 v cc 1 1 7 gnd gnd gnd gnd bc t r l r fi n 5 1 5 1 3 6 7 8 9 1 0 11 1 2 1 3 1 4 2 4 23003 k a yyww xxxxx 3 mm x 3 mm x 1mm t op view
2 electrical s pecifi cations a bsolute m inimum and m aximum r atings table 1. m inimum and m aximum r atings p arameter s pecifi cations c omments d escription p in m in. typical m ax. u nit supply voltage vcc1 vcc2 3 3.3 5.5 v bias supply bsply 3 3.3 5.5 v bias control bctrl 1.65 2.8 5.5 v bias on/off bsw 1.65 1.8 5.5 v mode control pamode 1.65 1.8 5.5 v rf input power rfin 15 dbm using 16qam msl msl3 channel temperature 150 c storage temperature -65 150 c table 2 . r ecommended o perating r ange p arameter s pecifi cations c omments d escription p in m in. typical m ax. u nit supply voltage vcc1 vcc2 3 3.3 5 v bias supply bsply 3 3.3 5 v 18 ma bias control bctrl 2.75 2.8 2.85 v 1ua bias on/off bsw 1.65 1.8 2.2 v 36 ua mode control pamode 1.65 1.8 2.2 v 15 ua rf output power rfout 25 dbm using 16qam frequency range 3.3 3.8 ghz thermal resistance, ? ch-b 23.4 c/w channel to board case temperature -40 +85 c
3 wi ma x ( 802 .1 6 e) electrical s pecifi cations all data measured on an fr4 demo board at vcc1 = vcc2 = 3.3v, bctrl = 2.8v, tc = 25c, 50 ? at all ports. unless otherwise specifi ed, all data is taken with ofdm 16-qam modulated signal per ieee 802.16e with 10mhz bw operating over the bw of 3.3ghz to 3.8ghz. table 3 . r f electrical c haracteristics p arameter p erformance c omments m in. typical m ax. u nit input return loss -10 db gain flatness 1 db over any 10mhz gain variation (v cc ) -1 1 db 3v to 5v high power mode evm -30 -27 db vcc=3.3v -32 -28 vcc=3.6v sem-a @5.05mhz -54 -32 dbm/100khz ibw=100khz sem-b @7.1mhz -46 -37 dbm/mhz ibw=1mhz sem-c @10.6mhz -51 -41 sem-d @20mhz -66 -60 sem-e @25mhz -68 -60 pout (sem compliant) +25 dbm etsi en 302 623 and etsi en 302 326-2 (3.3-3.8ghz) total dc current 520 600 ma pout=25dbm 490 pout=24dbm gain 32 34 38 db low power mode evm -30 db pout=0dbm 3.4-3.8ghz gain step 10 13 15 db total dc current 94 ma pout=0dbm p1db 31 dbm cw single tone psat 32 dbm cw single tone 2fo -12 -10 dbm/mhz 3.3-3.8ghz 3fo -43 -37 dbm/mhz settling time 0.2 0.5 us icc leakage current 10 40 ua noise power in cell band -143 dbm/hz noise power in gps band -142 dbm/hz noise power in pcs band -140 dbm/hz noise power in 2.4ghz wifi -138 dbm/hz
4 s elected performance plots figure 1. ev m frequency s weep at 25c and p out= 25 d b m over vcc figure 2 . ev m frequency s weep at 25c and p out= 26 d b m over vcc figure 3 . ev m frequency s weep at vcc= 3 . 3 v and p out= 25 d b m over tambient figure 4 . ev m p ower s weep at vcc= 3 . 3 v and 25c over frequency figure 5 . ev m p ower s weep at vcc= 3 . 3 v and - 30c over frequency figure 6 . ev m p ower s weep at vcc= 3 . 3 v and + 85c over frequency evm f req u e n cy s weep (v cc =3 . 0 t o 5 . 0v) t ambie nt=25c a n d p o ut=25 d b m -38 -36 -34 -32 -30 -28 -26 -24 -22 -20 3300 3400 3500 3600 3700 3800 f req u e n cy (mhz) evm ( d b) 3v0 3v3 3v6 4v2 5v0 evm p ower s weep (f req =3 . 3 t o 3 . 8ghz) t ambie nt=25c a n d v cc =3 . 3v -42 -40 -38 -36 -34 -32 -30 -28 -26 -24 -22 -20 20 21 22 23 24 25 26 p o ut ( d b m ) evm ( d b) evm f req u e n cy s weep (t ambie nt=-30c t o +85c) v cc =3 . 3v a n d p o ut=25 d b m -40 -38 -36 -34 -32 -30 -28 -26 -24 -22 -20 3300 3400 3500 3600 3700 3800 f req u e n cy (mhz) evm ( d b) evm f req u e n cy s weep (t ambie nt=-30c t o +85c) v cc =4 . 2v a n d p o ut=25 d b m -40 -38 -36 -34 -32 -30 -28 -26 -24 -22 -20 3300 3400 3500 3600 3700 3800 f req u e n cy (mhz) evm ( d b) evm p ower s weep (f req =3 . 3 t o 3 . 8ghz) t ambie nt=-30c a n d v cc =3 . 3v -42 -40 -38 -36 -34 -32 -30 -28 -26 -24 -22 -20 20 21 22 23 24 25 26 p o ut ( d b m ) evm ( d b) evm p ower s weep (f req =3 . 3 t o 3 . 8ghz) t ambie nt=+85c a n d v cc =3 . 3v -48 -46 -44 -42 -40 -38 -36 -34 -32 -30 -28 -26 -24 -22 -20 -18 20 21 22 23 24 25 26 p o ut ( d b m ) evm ( d b) -30c 25c +85c 3 . 3ghz 3 . 4ghz 3 . 5ghz 3 . 6ghz 3 . 7ghz 3 . 8ghz 3 . 3ghz 3 . 4ghz 3 . 5ghz 3 . 6ghz 3 . 7ghz 3 . 8ghz -30c 25c +85c 3 . 3ghz 3 . 4ghz 3 . 5ghz 3 . 6ghz 3 . 7ghz 3 . 8ghz
5 figure 7 . g ain frequency s weep at 25c and p out= 25 d b m over vcc figure 8 . g ain frequency s weep at vcc= 3 . 3 v and p out= 25 d b m over tambient figure 9 . g ain p ower s weep at vcc= 3 . 3 v and 25c over p out figure 1 0 . g ain p ower s weep at vcc= 3 . 3 v and - 30c over frequency figure 11. g ain p ower s weep at vcc= 3 . 3 v and -+ 85c over frequency g ai n f req u e n cy s weep (v cc =3 . 0 t o 5 . 0v) t ambie nt=25c a n d p o ut=25 d b m 30 31 32 33 34 35 36 37 38 39 40 3300 3400 3500 3600 3700 3800 f req u e n cy (mhz) g ai n ( d b) g ai n f req u e n cy s weep (t ambie nt=-30c t o +85c) v cc =3 . 3v a n d p o ut=25 d b m 30 31 32 33 34 35 36 37 38 39 40 3300 3400 3500 3600 3700 3800 f req u e n cy (mhz) g ai n ( d b) g ai n p ower s weep (f req =3 . 3 t o 3 . 8ghz) t ambie nt=25c a n d v cc =3 . 3v 30 31 32 33 34 35 36 37 38 39 40 20 21 22 23 24 25 26 p o ut ( d b m ) g ai n ( d b) g ai n p ower s weep (f req =3 . 3 t o 3 . 8ghz) t ambie nt=-30c a n d v cc =3 . 3v 30 31 32 33 34 35 36 37 38 39 40 20 21 22 23 24 25 26 p o ut ( d b m ) g ai n ( d b) g ai n p ower s weep (f req =3 . 3 t o 3 . 8ghz) t ambie nt=+85c a n d v cc =3 . 3v 30 . 00 31 . 00 32 . 00 33 . 00 34 . 00 35 . 00 36 . 00 37 . 00 38 . 00 39 . 00 40 . 00 20 21 22 23 24 25 26 p o ut ( d b m ) g ai n ( d b) 3 . 3ghz 3 . 4ghz 3 . 5ghz 3 . 6ghz 3 . 7ghz 3 . 8ghz 3 . 3ghz 3 . 4ghz 3 . 5ghz 3 . 6ghz 3 . 7ghz 3 . 8ghz 3 . 3ghz 3 . 4ghz 3 . 5ghz 3 . 6ghz 3 . 7ghz 3 . 8ghz -30c 25c +85c 3v0 3v3 3v6 4v2 5v0
6 figure 1 2 . total c urrent frequency s weep at 25c and p out= 25 d b m over vcc figure 1 3 . total c urrent frequency s weep at 3 . 3 v and p out= 25 d b m over tambient figure 1 4 . total c urrent p ower s weep at 3 . 3 v and 25c over frequency figure 1 5 . total c urrent p ower s weep at 3 . 3 v and - 30c over frequency figure 1 6 . total c urrent p ower s weep at 3 . 3 v and + 85c over frequency t o t a l cu rre nt f req u e n cy s weep (t ambie nt=-30c t o +85c) v cc =3 . 3v a n d p o ut=25 d b m 0 . 42 0 . 44 0 . 46 0 . 48 0 . 50 0 . 52 0 . 54 0 . 56 0 . 58 0 . 60 0 . 62 3300 3400 3500 3600 3700 3800 f req u e n cy (mhz) it o t a l (a) it o t a l (a) t o t a l cu rre nt p ower s weep (f req =3 . 3 t o 3 . 8ghz) t ambie nt=25c a n d v cc =3 . 3v 0 . 30 0 . 34 0 . 38 0 . 42 0 . 46 0 . 50 0 . 54 0 . 58 0 . 62 20 21 22 23 24 25 26 p o ut ( d b m ) t o t a l cu rre nt p ower s weep (f req =3 . 3 t o 3 . 8ghz) t ambie nt=-30c a n d v cc =3 . 3v 0 . 30 0 . 34 0 . 38 0 . 42 0 . 46 0 . 50 0 . 54 0 . 58 0 . 62 20 21 22 23 24 25 26 p o ut ( d b m ) it o t a l (a) t o t a l cu rre nt p ower s weep (f req =3 . 3 t o 3 . 8ghz) t ambie nt=+85c a n d v cc =3 . 3v 0 . 30 0 . 34 0 . 38 0 . 42 0 . 46 0 . 50 0 . 54 0 . 58 0 . 62 20 21 22 23 24 25 26 p o ut ( d b m ) it o t a l (a) -30c 25c +85c 3 . 3ghz 3 . 4ghz 3 . 5ghz 3 . 6ghz 3 . 7ghz 3 . 8ghz 3 . 3ghz 3 . 4ghz 3 . 5ghz 3 . 6ghz 3 . 7ghz 3 . 8ghz 3 . 3ghz 3 . 4ghz 3 . 5ghz 3 . 6ghz 3 . 7ghz 3 . 8ghz t o t a l cu rre nt f req u e n cy s weep (v cc =3 . 0 t o 5 . 0v) t ambie nt=25c a n d p o ut=25 d b m 0 . 42 0 . 44 0 . 46 0 . 48 0 . 50 0 . 52 0 . 54 0 . 56 0 . 58 0 . 60 0 . 62 3300 3400 3500 3600 3700 3800 f req u e n cy (mhz) it o t a l (a) 3v0 3v3 3v6 4v2 5v0
7 figure 1 7 . s e m frequency s weep at vcc= 3 . 3 v and 25c ( 2 d b p ost- pa loss assumed) figure 1 8 . s e m frequency s weep at vcc= 3 . 6 v and 25c ( 2 d b p ost- pa loss assumed) figure 1 9 . s e m frequency s weep at vcc= 4 . 2 v and 25c ( 2 d b p ost- pa loss assumed) figure 20 . s e m at vcc= 3 . 3 v, 25c and 3 . 3g hz over vcc ( 2 d b p ost- pa loss assumed) figure 2 1. s e m at vcc= 3 . 3 v, 25c and 3 . 4g hz over vcc ( 2 d b p ost- pa loss assumed) figure 22 . s e m at vcc= 3 . 3 v, 25c and 3 . 5g hz over vcc ( 2 d b p ost- pa loss assumed) w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) p o ut=25 d b m, v cc =3 . 3v a n d t ambie nt=25c w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) p o ut=25 d b m, v cc =3 . 6v a n d t ambie nt=25c w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) p o ut=25 d b m, v cc =4 . 2v a n d t ambie nt=25c w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) p o ut=25 d b m, f req =3 . 3ghz a n d t ambie nt=25c w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) p o ut=25 d b m, f req =3 . 4ghz a n d t ambie nt=25c w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) p o ut=25 d b m, f req =3 . 5ghz a n d t ambie nt=25c -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 freq _ o ? se t (mhz) p o ut ( d b m /mhz) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 freq _ o ? se t (mhz) p o ut ( d b m /mhz) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 freq _ o ? se t (mhz) p o ut ( d b m /mhz) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 freq _ o ? se t (mhz) p o ut ( d b m /mhz) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 freq _ o ? se t (mhz) p o ut ( d b m /mhz) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 freq _ o ? se t (mhz) p o ut ( d b m /mhz) s pec 3 . 3ghz 3 . 4ghz 3 . 5ghz 3 . 6ghz 3 . 7ghz 3 . 8ghz s pec 3 . 3ghz 3 . 4ghz 3 . 5ghz 3 . 6ghz 3 . 7ghz 3 . 8ghz s pec 3 . 3ghz 3 . 4ghz 3 . 5ghz 3 . 6ghz 3 . 7ghz 3 . 8ghz s pec 3v0 3v3 3v6 4v2 5v0 s pec 3v0 3v3 3v6 4v2 5v0 s pec 3v0 3v3 3v6 4v2 5v0
8 figure 23 . s e m at vcc= 3 . 3 v, 25c and 3 . 6g hz over vcc ( 2 d b p ost- pa loss assumed) figure 24 . s e m at vcc= 3 . 3 v, 25c and 3 . 7g hz over vcc ( 2 d b p ost- pa loss assumed) figure 25 . s e m at vcc= 3 . 3 v, 25c and 3 . 8g hz over vcc ( 2 d b p ost- pa loss assumed) figure 26 . s e m at vcc= 3 . 3 v, 25c and 3 . 3g hz over vcc ( 2 d b p ost- pa loss assumed) figure 27 . s e m at vcc= 3 . 3 v, 25c and 3 . 4g hz over vcc ( 2 d b p ost- pa loss assumed) figure 28 . s e m at vcc= 3 . 3 v, 25c and 3 . 5g hz over vcc ( 2 d b p ost- pa loss assumed) w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) p o ut=25 d b m, f req =3 . 6ghz a n d t ambie nt=25c w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) p o ut=25 d b m, f req =3 . 7ghz a n d t ambie nt=25c w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) p o ut=25 d b m, f req =3 . 8ghz a n d t ambie nt=25c w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) v cc =3 . 3v , f req =3 . 3ghz a n d t ambie nt=25c w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) v cc =3 . 3v , f req =3 . 4ghz a n d t ambie nt=25c w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) v cc =3 . 3v , f req =3 . 5ghz a n d t ambie nt=25c -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 freq _ o ? se t (mhz) p o ut ( d b m /mhz) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 freq _ o ? se t (mhz) p o ut ( d b m /mhz) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 freq _ o ? se t (mhz) p o ut ( d b m /mhz) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 freq _ o ? se t (mhz) p o ut ( d b m /mhz) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 freq _ o ? se t (mhz) p o ut ( d b m /mhz) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 freq _ o ? se t (mhz) p o ut ( d b m /mhz) s pec 25 d b m 24 d b m 23 d b m 22 d b m 21 d b m s pec 3v0 3v3 3v6 4v2 5v0 s pec 3v0 3v3 3v6 4v2 5v0 s pec 25 d b m 24 d b m 23 d b m 22 d b m 21 d b m s pec 25 d b m 24 d b m 23 d b m 22 d b m 21 d b m s pec 3v0 3v3 3v6 4v2 5v0
9 figure 29 . s e m at vcc= 3 . 3 v, 25c and 3 . 6g hz over vcc ( 2 d b p ost- pa loss assumed) figure 30 . s e m at vcc= 3 . 3 v, 25c and 3 . 7g hz over vcc ( 2 d b p ost- pa loss assumed) figure 3 1. s e m at vcc= 3 . 3 v, 25c and 3 . 8g hz over vcc ( 2 d b p ost- pa loss assumed) figure 32 . s e m at vcc= 3 . 3 v, - 30c and 3 . 3g hz over vcc ( 2 d b p ost- pa loss assumed) figure 33 . s e m at vcc= 3 . 3 v, - 30c and 3 . 4g hz over vcc ( 2 d b p ost- pa loss assumed) figure 34 . s e m at vcc= 3 . 3 v, - 30c and 3 . 5g hz over vcc ( 2 d b p ost- pa loss assumed) w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) v cc =3 . 3v , f req =3 . 6ghz a n d t ambie nt=25c w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) v cc =3 . 3v , f req =3 . 7ghz a n d t ambie nt=25c w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) v cc =3 . 3v , f req =3 . 8ghz a n d t ambie nt=25c -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 freq _ o ? se t (mhz) p o ut ( d b m /mhz) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 freq _ o ? se t (mhz) p o ut ( d b m /mhz) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 freq _ o ? se t (mhz) p o ut ( d b m /mhz) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 freq _ o ? se t (mhz) p o ut ( d b m /mhz) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 freq _ o ? se t (mhz) p o ut ( d b m /mhz) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 p o ut ( d b m /mhz) w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) v cc =3 . 3v , f req =3 . 3ghz a n d t ambie nt=-30c w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) v cc =3 . 3v , f req =3 . 5ghz a n d t ambie nt=-30c w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) v cc =3 . 3v , f req =3 . 4ghz a n d t ambie nt=-30c -25 -20 -15 -10 -5 0 5 10 15 20 25 freq _ o ? se t (mhz) s pec 25 d b m 24 d b m 23 d b m 22 d b m 21 d b m s pec 25 d b m 24 d b m 23 d b m 22 d b m 21 d b m s pec 25 d b m 24 d b m 23 d b m 22 d b m 21 d b m s pec 25 d b m 24 d b m 23 d b m 22 d b m 21 d b m s pec 25 d b m 24 d b m 23 d b m 22 d b m 21 d b m s pec 25 d b m 24 d b m 23 d b m 22 d b m 21 d b m
10 figure 35 . s e m at vcc= 3 . 3 v, - 30c and 3 . 6g hz over vcc ( 2 d b p ost- pa loss assumed) figure 36 . s e m at vcc= 3 . 3 v, - 30c and 3 . 7g hz over vcc ( 2 d b p ost- pa loss assumed) figure 37 . s e m at vcc= 3 . 3 v, - 30c and 3 . 8g hz over vcc ( 2 d b p ost- pa loss assumed) figure 38 . s e m at vcc= 3 . 3 v, + 85c and 3 . 3g hz over vcc ( 2 d b p ost- pa loss assumed) figure 39 . s e m at vcc= 3 . 3 v, + 85c and 3 . 4g hz over vcc ( 2 d b p ost- pa loss assumed) figure 40 . s e m at vcc= 3 . 3 v, + 85c and 3 . 5g hz over vcc ( 2 d b p ost- pa loss assumed) w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) v cc =3 . 3v , f req =3 . 6ghz a n d t ambie nt=-30c -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 freq _ o ? se t (mhz) p o ut ( d b m /mhz) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 freq _ o ? se t (mhz) p o ut ( d b m /mhz) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 freq _ o ? se t (mhz) p o ut ( d b m /mhz) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 freq _ o ? se t (mhz) p o ut ( d b m /mhz) w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) v cc =3 . 3v , f req =3 . 7ghz a n d t ambie nt=-30c w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) v cc =3 . 3v , f req =3 . 3ghz a n d t ambie nt=+85c w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) v cc =3 . 3v , f req =3 . 8ghz a n d t ambie nt=-30c s pec 25 d b m 24 d b m 23 d b m 22 d b m 21 d b m s pec 25 d b m 24 d b m 23 d b m 22 d b m 21 d b m s pec 25 d b m 24 d b m 23 d b m 22 d b m 21 d b m s pec 25 d b m 24 d b m 23 d b m 22 d b m 21 d b m -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 freq _ o ? se t (mhz) p o ut ( d b m /mhz) -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 freq _ o ? se t (mhz) p o ut ( d b m /mhz) w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) v cc =3 . 3v , f req =3 . 4ghz a n d t ambie nt=+85c w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) v cc =3 . 3v , f req =3 . 5ghz a n d t ambie nt=+85c s pec 25 d b m 24 d b m 23 d b m 22 d b m 21 d b m s pec 25 d b m 24 d b m 23 d b m 22 d b m 21 d b m
11 figure 43 . s e m at vcc= 3 . 3 v, + 85c and 3 . 8g hz over vcc ( 2 d b p ost- pa loss assumed) figure 4 1. s e m at vcc= 3 . 3 v, + 85c and 3 . 6g hz over vcc ( 2 d b p ost- pa loss assumed) figure 42 . s e m at vcc= 3 . 3 v, + 85c and 3 . 7g hz over vcc ( 2 d b p ost- pa loss assumed) freq _ o ? se t (mhz) p o ut ( d b m /mhz) freq _ o ? se t (mhz) p o ut ( d b m /mhz) freq _ o ? se t (mhz) p o ut ( d b m /mhz) w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) v cc =3 . 3v , f req =3 . 8ghz a n d t ambie nt=+85c s pec 25 d b m 24 d b m 23 d b m 22 d b m 21 d b m -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 -25 -20 -15 -10 -5 0 5 10 15 20 25 w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) v cc =3 . 3v , f req =3 . 6ghz a n d t ambie nt=+85c w i max s pec t r u m e missio n m as k , 802 . 16 e (16qam 3/4) v cc =3 . 3v , f req =3 . 7ghz a n d t ambie nt=+85c s pec 25 d b m 24 d b m 23 d b m 22 d b m 21 d b m s pec 25 d b m 24 d b m 23 d b m 22 d b m 21 d b m s pec 25 d b m 24 d b m 23 d b m 22 d b m 21 d b m
12 table 4 . evaluation b oard p in d escription top p in n o. function 1 vcc2 3 b_sply 5 vcc1 7 nc 9 pamod 11 nc 13 nc 15 b_ctrl 17 nc 19 nc b ottom p in n o. function 2 vcc2_s 4 gnd 6 gnd 8 gnd 10 gnd 12 gnd 14 b_sw 16 gnd 18 gnd 20 gnd recommended turn on sequence ?? apply vcc1 and vcc2 ?? apply bsply ?? apply bctrl ?? apply bsw ?? for hpm apply pamod hi for lpm apply pamod lo ?? apply rf in not to exceed 15dbm turn off in reverse order table 5 . typical test c onditions p in h pm l pm vcc1,2 3.3v 3.3v supply voltage pamod 1.8v 0v low power mode b_sply 3.3v 3.3v bias voltage b_ctrl 2.8v 2.8v bias control b_sw 1.8v 1.8v pa enable notes: vcc1, vcc2 and b_sply can be tied together to reduce supply voltages, but b_ctrl needs to be a regulated voltage which is optimized for 2.8v. evaluation b oard d escription d emoboard top p ins d emoboard b ottom p ins
13 a pplication c ircuit mga - 23003 1 rf in 2 gnd 3 gnd 4 bctrl gnd 12 rf out 11 gnd 10 nc 9 bctrl rf in rf out 100 p f gnd 16 vcc1 15 gnd 14 vcc2 13 5 bsply 6 bsw 7 pamod 8 nc 100 p f bsply bsw pamod v dd 1 100 p f v dd 2 100 p f 100 p f 0 . 1uf 100 p f 0 . 1uf 10uf 47uf 10uf 1 rf in 2 gnd 3 gnd 4 bctrl gnd 12 rf out 11 gnd 10 nc 9 gnd 16 vcc1 15 gnd 14 vcc2 13 5 bsply 6 bsw 7 pamod 8 nc u sing 3 . 3 v or 5 v s upply and tying vcc1, vcc 2 , bsp ly and bc t r l v ba t v cc 1 v cc 2 bsply r 1 r 2 bctrl 3 . 3 v example : r 2 v bctrl = *v batt r 1 + r 2 40k ? 2.8v = *3.3v r 1 + 40k ? r 1 = 7k ? r 2 = 40k ? g iven : v bctrl = 2.8v v bat = 3.3v r 2 = 40k ? r 1 = ? 5 . 0 v example : r 2 v bctrl = *v batt r 1 + r 2 20k ? 2.0v = *5.0v r 1 + 20k ? r 1 = 30k ? r 2 = 20k ? g iven : v bctrl = 2.0v v bat = 5.0v r 2 = 20k ? r 1 = ? notes: bctrl regulates the device current, thus r1 and r2 should have good tolerance rating. if available, a voltage regulator is the preferred method of bias. in this example we set r2 at 40kohm and solve for r1 with simple voltage divider equation. note this method will cause some leakage current through r2.
14 land p attern figure 44 . r ecommended footprint figure 45 . r ecommended mask opening 3 . 000 . 10 1 . 500 . 10 t op v iew th ro u g h pac k age 3 . 000 . 10 1 . 500 . 10 0 . 550 . 10 0 . 300 . 10 0 . 600 . 10 0 . 200 . 10 0 . 100 . 10 nc bctrl 9 4 bsply 5 bsw pamod 67 nc 8 rfout 15 rfin gnd gnd 1 3 2 16 gnd vcc2 vcc1 17 14 gnd 13 gnd 12 10 11 gnd gnd 3 . 000 . 10 t op v iew th ro u g h pac k age 3 . 000 . 10 0 . 650 . 10 0 . 400 . 10 1 . 600 . 10 0 . 550 . 10 0 . 100 . 10 nc bctrl 9 4 5678 rfout 15 rfin gnd gnd 1 3 2 16 gnd vcc2 vcc1 17 14 gnd 13 gnd 12 10 11 gnd gnd bsply bsw pamod nc 3 . 000 . 10 3 . 000 . 10 0 . 300 . 10 1 . 500 . 10 0 . 150 . 10 1 . 500 . 10 t op v iew th ro u g h pac k age 0 . 300 . 10 0 . 200 . 10 0 . 600 . 10 nc 9 4 5678 rfout 15 gnd gnd 1 3 2 16 gnd vcc2 vcc1 17 14 gnd 13 gnd 12 10 11 gnd gnd bctrl rfin bsply bsw pamod nc figure 46 . p ackage dimensions notes: 1. all units are in millimeters 2. package is symmetrical
15 o rdering information p art n umber n o. of d evices c ontainer MGA-23003-blkg 100 7" reel MGA-23003-tr1g 3000 13" reel note 1. all dimensions are in millimeters. 2. dimensions are inclusive of plating. 3. dimensions are exclusive of mold fl ash and metal burr. p ackage d imensions p in 1 d ot b y m arking 3 . 00 0 .1 0 3 . 00 0 .1 0 23003 kayyww xxxx 0 . 64 ty p i ca l 1. 00 0 .1 0 t op view s i d e view d evice o rientation us e r fee d d i r e c ti on t op view e nd view us e r fee d d i r e c ti on co ve r t ap e carr ie r t ap e r eel a v ago 23003 yyww xxxx a v ago 23003 yyww xxxx a v ago 23003 yyww xxxx
16 tape and r eel information s i z e a b 1.5min. c d 20.2min. n w1 w2 12 mm w3 330 +2.0 ?2.0 13.0 +0.5 ?0.2 100 +3.0 ?0.0 12.4 +3.0 ?0.0 16.4 +2.0 ?2.0 13.65 +1.75 ?0.75 3 . 40 0 .1 0 1. 70 0 .1 0 0 . 30 0 . 05 1 2 . 00 0 . 30 5 . 50 0 . 05 4 . 00 0 .1 0 2 . 00 0 . 05 1. 75 0 .1 0 8 . 00 0 .1 0 ? 1. 50m i n ? 1. 50 + 0 .1 0 C 0 . 00 b a n c w 3 w 2 w1 ? 1 3 . 0 + 0 . 50 C 0 . 20 1 20 2 . 00 1 0 . 50
for product information and a complete list of distributors, please go to our web site: www.avagotech.com avago, avago technologies, and the a logo are trademarks of avago technologies in the united states and other countries. data subject to change. copyright ? 2005-2012 avago technologies. all rights reserved. av02-1960en - september 14, 2012 handling and s torage typical sm t r efl ow p rofi le for m aximum temperature = 260 + 0 /- 5 c p rofi le feature s n- p b s older p b-free s older a verage ra m p-up rate (tl to tp) 3 c /sec m ax 3 c /sec m ax preheat C te m perature m in (ts min ) C te m perature max (ts m ax) C t im e ( m o n to m ax) (ts) 1 00 c 1 50 c 6 0 -1 20 sec 1 00 c 1 50 c 6 0 -18 0 sec ts m ax to tl C ra m p-up rate 3 c /sec m ax t im e m a in ta in ed above: C te m perature (tl) C t im e (tl) 18 3 c 6 0 -1 50 sec 2 1 7 c 6 0 -1 50 sec peak te m perature (tp) 2 4 0 + 0 /- 5 c2 6 0 + 0 /- 5 c t im e w i th in 5 c of actual peak te m perature (tp) 1 0 - 30 sec 1 0 - 30 sec ra m p-dow n rate 6 c /sec m ax 6 c /sec m ax t im e 25 c to peak te m perature 6 min m ax 8 min m ax time temperature t p t 25 c to peak t s preheat t l t p t s ma x t s mi n t l critical zone t l to t p ramp up ramp down 25


▲Up To Search▲   

 
Price & Availability of MGA-23003

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X